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Abstract. Ponderomotive forces from applied rf fields are generally too weak to stabilize MHD
instabilities in toroidal plasmas for practical values of rf fields. We are investigating whether rf
waves in a vacuum region between a plasma and wall can stabilize resistive wall instabilities. In
-our model the rf waves are generated in an RFP by an oscillating poloidal loop voltage. Because
the resistive wall acts as a perfect conductor to high frequency rf fields, the rf field in the vacuum
region is strongly compressed by the surface motion, thereby generating a strong restoring force.
We consider a simple model in which the dielectric properties of the plasma, used to determine the
rf penetration, are assumed to be that of an unmagnetized perfectly conducting plasma. Within this
model we find stabilization at moderate rf power. However, the dielectric properties of a magnetized
plasma, presently under study, weaken the effect.

The resistive wall modes are potentially dangerous instabilities in long-pulse Reversed
Field Pinch (RFP) experiments. We investigate the possibility of stabilizing these modes
by an rf voltage applied to a toroidal gap of an RFP. This stabilization results from the
work done by the plasma against the ponderomotive force exerted by the rf field.

When there is a small vacuum region between plasma and resistive wall, the plasma
surface perturbation strongly perturbs the rf fields in this region, generating a strong
restoring force. The effect is significant for two reasons. First, the resistive wall acts
essentially as a perfect conductor to high frequency rf fields. Second, the smaller the
width of the vacuum region, the stronger the restoring force.

An approach of this kind was suggested in Ref. [1] for the ponderomotive stabilization
of external kink modes in tokamaks. In this paper it was suggested to launch rf waves
with ion Bernstein wave type antenna systems to create the wave structure with a
strongly evanescent E)| field. In this analysis the effects due to the perturbation of the
applied rf wave intensity where neglected.

Our analysis relates to RFPs in which the magnetic field at the plasma surface is
nearly poloidal. In this case the appropriate evanescent rf wave structure can be created
by applying the rf voltage to the toroidal gap of an RFP. In our analysis the perturbation
of rf intensity due to the perturbation of the plasma boundary plays crucial role.

Simplified consideration of rf pressure. We consider a cylindrical geometry shown
in Fig. 1 with plasma radius a and resistive wall radius b. An rf voltage of frequency ®
is applied to the toroidal gap. We assume that in this model the rf waves are excited by
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a uniformly distributed electric field on the
surface of the vessel:

resistive
wall

E(b) = = (Eae™™ +c.c.)ep.

| —

In this simplified consideration we assume
the dielectric properties of the plasma to
be that of an unmagnetized perfectly con-
ducting plasma. In the frequency ranges of
interest 0 < ®;; or ® 2 ©; the condition
A= wa/c < 1 is satisfied. FIGURE 1.

From Maxwell’s equations we find the nonzero components of unperturbed fields in
the vacuum region satisfying the boundary conditions at r = a and r = b:

BEs (r—a)(r+a) , _ 2 8
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The time averaged rf pressure on the plasma surface is
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Using a perturbative approach we find the rf pressure on a perturbed plasma surface.
We consider the surface perturbation of the form

1 . .
ry :a+§ (Aetme-sz_{_C'c‘) .

For the perturbed plasma surface, the rf fields in the vacuum layer are a superposition of
the unperturbed fields of Egs. (1) and a perturbation. The general form of the amplitudes
of the perturbed rf fields satisfying Maxwell’s equations is

E, = [B Lu([k|r) + CT K (|k|r)] €™ + [B™Lu(|k|r) + C™ Kin(|k|r) ]| e 7m0~k
B, = [D+Im(lk|r) +F+Km(|k|l‘)] oimO-+ikz | [D_Im(|k|r) +FVKm(|klr)] o imb—ikz

The boundary conditions at r = b, Eg(b) = 0 and E,(b) = 0, and similar conditions on
the plasma-vacuum boundary are used to find the coefficients in the above equations.
Then we find the total time averaged rf pressure on the plasma surface:

1 . .
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8rf
I (|k|b I (|k|b
where gop = In((K10) ~ 22 K1), g = (1K) — LK (o)
m m
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Because in Eq. (2) pyf > 0, the perturbed rf pressure profile has a stabilizing effect
on the plasma surface. This profile is such that the local force acting on the displaced
plasma surface tends to restore the plasma to its equilibrium state.

In spite of its smallness, the rf pressure can influence the stability properties of
the plasma. From Eq. (2) it follows that the perturbed rf pressure is proportional to
A/ (b~ a) (gy¢ o< b— a), while the MHD force acting on the perturbed plasma column
is proportional to A/a (for the low frequencies of resistive wall modes). This means
that for a sufficiently thin vacuum layer the perturbed MHD and rf forces can be
comparable even when the unperturbed rf pressure is significantly smaller than the
magnetic pressure.

Calculation of the growth rates. We derive the equation for the growth rates of the
resistive wall modes in a similar way as done in Chap. 9 of Ref. [2] for the general
screw pinch. We modify the pressure balance equation on the plasma-vacuum boundary
by including the rf pressure calculated in the previous section. This pressure balance
becomes:

BB/ o = BaB, +4mpC, .

This leads to the equation for the growth rate m;:
k*b* +m? OWes + W,
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where
Tp = 4nbd/nc*, W, = 2n°Roap 2,

OW... and 8W, relate to SW with a perfectly conducting wall located at r = « and r = b,
they are defined in Ref. [2]. 8W,¢ is proportional to the work done by the forces of
rf pressure exerted on the plasma-vacuum surface when this surface is continuously
perturbed by increasing &, from 0 to its amplitude value.

For a mode, unstable without-the rf pressure, 8W.. < 0 and 8W,, > 0. In Eq. (3) one can
assume that W, < 8Wj,. Because W > 0, the rf pressure either reduces the growth
rate of an unstable mode or stabilizes it.

To estimate changes to the growth rates, we consider an equilibrium cylindrical
state given by the Taylor’s theory in the limit of zero plasma pressure. In this state
B;/Bo = Jo(ur) , Be/Bo = Ji(ur) , where By is the toroidal field on axis. B, reverses on
the outside if ua > 2.4.

To estimate dW.. we take the trial function §(r) = &,, 0 < r < a. With these as-
sumptions the growth rate ;tp is defined by the dimensionless parameters Py/Pp
(Ps= B(z) /8T), ua, b/a, m, ka. The modes unstable without rf power are with m = 1.
Because the growth rate is symmetric with respect to simultaneous change m — —m,
k — —k, we consider the modes with m = 1.

Figures 2(a)-(c) show the dependence of w;Tp versus ka for yua = 2.4;2.5;2.6. The
dashed lines are w;tp without rf pressure and the solid lines are w;Tp with Py/Pg = 0.05.
When m; > 0 the mode is unstable, and when ®; < 0 the mode is stable.

From this figure one can see that without the rf pressure the mode is unstable for
some range of wave numbers ka. With the rf pressure the mode is either stabilized
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FIGURE 2. ®;tp vs. ka. (a) ya = 2.4, (b) pa = 2.5, (c) pa = 2.6. In all cases: (- - -) Py/Pp =0, (—)
Py/Pg=0.05;b/a=1.1,m=1

or its maximum growth rate is reduced by approximately an order of magnitude. If
one identifies an equivalent torus of length 2mRy, then the wave number k becomes
quantized: ka = na/Ry. If we take the aspect ratio Ry/a = 3, then from Fig. 2 one can
see that the mode is stabilized by the rf pressure for these wave numbers.

This analysis shows that the stabilization of the resistive wall modes in RFPs is
possible with application of moderate rf power. From this point of view this approach
seems to be attractive. Further analysis with a more realistic description of the dielectric
properties of the plasma is necessary, however, for a more substantiated conclusion about
the applicability of this approach.

Discussion. We performed a study of a more realistic model of a magnetized plasma
in plane geometry in three different regimes. In the first case we considered rf frequency
range ® < ;. In this model there is a skin layer due to finite plasma resistivity and
the propagation of rf waves is described by a resistive MHD model. The second case
relates to ® 2 m,; and the skin layer is defined by electron inertia. In this model the
propagation of em waves is described by a cold plasma dielectric tensor. In the third
case we considered the second case with the assumption of zero skin depth.

All of these regimes reproduce the result of the ideal case of an unmagnetized plasma
only for perturbations with m = 0, which is not the case of interest for external modes.
Within the accuracy of calculations the rf pressure does not influence the perturbations
with m # 0, i. e. it neither stabilizes nor destabilizes them. This suppression of the effect
is because of the presence of a penetrating branch in the magnetized plasma with the
electric field component perpendicular to the equilibrium magnetic field.

Effects due to perturbation of rf intensity considered with the proper description of
the plasma dielectric properties should be taken into account in analysis of the methods
of ponderomotive stabilization of external modes in fusion devices.
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